skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liebhold, ed., Andrew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract When herbivorous insects interact, they can increase or decrease each other's fitness. As it stands, we know little of what causes this variation. Classic competition theory predicts that competition will increase with niche overlap and population density. And classic hypotheses of herbivorous insect diversification predict that diet specialists will be superior competitors to generalists. Here, we test these predictions using phylogenetic meta‐analysis. We estimate the effects of diet breadth, population density and proxies of niche overlap: phylogenetic relatedness, physical proximity and feeding‐guild membership. As predicted, we find that competition between herbivorous insects increases with population density as well as phylogenetic and physical proximity. Contrary to predictions, competition tends to be stronger between than within feeding guilds and affects specialists as much as generalists. This is the first statistical evidence that niche overlap increases competition between herbivorous insects. However, niche overlap is not everything; complex feeding guild effects indicate important indirect interactions. 
    more » « less
  2. Abstract Species often respond to human‐caused climate change by shifting where they occur on the landscape. To anticipate these shifts, we need to understand the forces that determine where species currently occur. We tested whether a long‐hypothesised trade‐off between climate and competitive constraints explains where tree species grow on mountain slopes. Using tree rings, we reconstructed growth sensitivity to climate and competition in range centre and range margin tree populations in three climatically distinct regions. We found that climate often constrains growth at environmentally harsh elevational range boundaries, and that climatic and competitive constraints trade‐off at large spatial scales. However, there was less evidence that competition consistently constrained growth at benign elevational range boundaries; thus, local‐scale climate‐competition trade‐offs were infrequent. Our work underscores the difficulty of predicting local‐scale range dynamics, but suggests that the constraints on tree performance at a large‐scale (e.g. latitudinal) may be predicted from ecological theory. 
    more » « less